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Chapter 1

Introduction to Bézier

Geometry

We briefly discuss polynomials for three main reasons: (1) To be explicit regarding the

terminology of power versus order and be clear on the conventions and notations here,

(2) to lay the framework for more sophisticated interpolations that will rely on polynomials

in some form, and (3) to the note shortcomings of regular polynomials as a basis and thus

motivate alternative approaches.

First, with regard to power versus order, [Cottrell et al., 2009] noted the following:

“There is a terminology conflict between the geometry and analysis com-
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munities. Geometers will say a cubic polynomial has degree 3 and order 4. In

geometry, order equals degree plus one. Analysts will say a cubic polynomial

is order three, and use the term order and degree synonymously. This is the

convention we [Cottrell, Hughes, Bazilevs] adhere to.” Page 18, Note 3.

Unlike [Cottrell et al., 2009], we adopt the geometry community convention in this doc-

ument, thus we distinguish between order and degree. We have elected this approach

primarily for consistency of this document with historical writings of the geometry commu-

nity.

Next, there is some basic notation used with polynomials that we need to make clear

and concrete. Let f p(x) be the function of degree p (equivalently, order p+1) that is a sum

of variable x raised to some increasing non-negative integer power, starting from zero, and

multiplied by a constant coefficient a, such that

f p(x)
∆
= a0x

0 + a1x
1 + a2x

2 + a3x
3 + · · ·+ apx

p =

p∑
i=0

aix
i. (1.1)

The function f p(x) is a polynomial of degree p, the highest non-zero power1 used in the

summation. Table 1.1 lists the first five polynomials by order, degree, name, and function.

Hereinafter, p will be considered the index of the power of a polynomial. The p-index, a

subset of non-negative integers, will start from zero and consecutively increase by one.

1We suggest the mnemonic of “p” as the index used for the “power” in a “polynomial.”
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Table 1.1: First five orders of a polynomial function.

order degree name function

O(1) p = 0 constant f 0(x) = a0

O(2) p = 1 linear f 1(x) = a0 + a1x

O(3) p = 2 quadratic f 2(x) = a0 + a1x+ a2x
2

O(4) p = 3 cubic f 3(x) = a0 + a1x+ a2x
2 + a3x

3

O(5) p = 4 quartic f 4(x) = a0 + a1x+ a2x
2 + a3x

3 + a4x
4

One note regarding conventions of indices: We use the first item of a series s to be s[0],

the second item to be s[1], and so forth. We prefer the zero-based indices because it is

consistent not only with our work in Python, which is zero-based, but also with concepts

from initial boundary value problems (IBVPs), which denote initial conditions, the first

values, as occurring at t0.

Finally, we state as prima facie a well-known shortcoming of polynomials is their propen-

sity to overfit the data. This characteristic arises because a polynomial of degree p has p−1

changes of direction, from −f p(x) to f p(x), or vice versa. No further discussion on overfit-

ting is given here, though explications of this topic are widely available.
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Chapter 2

Bézier Curves

Several of the ideas in this section are due to many excellent references [Bartels et al., 1995,

Piegl and Tiller, 1997, Rogers, 2000, Shiach, 2015b, Shiach, 2015a]. A Bézier curve is a

parametric curve defined by control points. A control point P i will have two coordinates

(xi, yi) in 2D and three coordinates (xi, yi, zi) in 3D. The parameter is typically denoted t.

The bounds for t are 0 ≤ t ≤ 1 unless otherwise indicated.

Here, t does not denote time. Rather, t can be thought of as a “pseudo-time,” wherein

the parameterization flows from beginning to end of the t bounds. Also, the bounds of t

will later be shown to be arbitrary. For now, however, it is much more convenient to state

the bounds as between zero and one.

A Bézier curve of degree p requires p + 1 control points. For example, a Bézier curve

7



2.1. BÉZIER LINE 8

that is a line (degree p = 1) requires two control points. Affine transformations may be

used to modify the control points, e.g., to scale, reflect, rotate, or translate (offset) the

control points.

2.1 Bézier Line

Let P be the set of two points P 0 = (x0, y0, z0) ∈ R3 and P 1 = (x1, y1, z1) ∈ R3. Let

the parameter t be a member of T = [0, 1] ⊂ R. Then, let C(t;P 0,P 1) : P × T 7→ R3

be parametric equation for a line between two points P 0 and P 1. This parameterization

constructs the Bézier line, which is the parameterized linear interpolation P 0 and P 1,

C(t;P 0,P 1)
∆
= (1− t) P 0 + t P 1, (2.1)

or in explicit coordinate form,
x(t)

y(t)

z(t)

 = (1− t)


x0

y0

z0

+ t


x1

y1

z1

 . (2.2)
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2.2. BÉZIER QUADRATIC 9

2.2 Bézier Quadratic

Let Q(t;Q0,Q1) be the parametric equation for a quadratic between two points Q0 and

Q1. Let the position of these two points themselves be parameterized by three points P 0,

P 1, and P 2, such that

Q0(t;P 0,P 1) = (1− t) P 0 + t P 1, (2.3)

Q1(t;P 1,P 2) = (1− t) P 1 + t P 2. (2.4)

Thus, the position ofQ0(t) is on the line between points P 0 and P 1 and parameterized by t.

The position of Q1(t) is on the line between points P 1 and P 2 and likewise parameterized

by t. At t = 0, Q0(t) resides at P 0, Q1(t) resides at P 1. At t = 1, Q0(t) resides at P 1,

Q1(t) resides at P 2. Finally, let any position along the quadratic Bézier curve Q(t;Q0,Q1)

be defined as

Q(t;Q0(t),Q1(t))
∆
= (1− t) Q0(t) + t Q1(t). (2.5)

This curve can be recast in terms of the three points P 0, P 1, and P 2 by substituting (2.3)

and (2.4),

Q(t;P 0,P 1,P 2) = (1− t)2 P 0 + 2t(1− t) P 1 + t2 P 2. (2.6)

SAND2022-7702 C 2022-06-08



2.2. BÉZIER QUADRATIC 10

Figure 2.1(a) illustrates an example quadratic Bézier curve, with the three control points

P 0, P 1, and P 2 indicated.1,2 We will designate the number of control points to be (n+ 1).

Thus, the number of control points in the current example (Figure 2.1) is (n+ 1) = 3 =⇒
n = 2. Each control point can be identified in sequence as P i, with i = 0, 1, . . . n. The

maximum degree Bézier that can be constructed is two (degree p requires p + 1 control

points). Thus we see:

Given a series of (n + 1) control points,

we can construct a Bézier curve of degree p = n.

1We do not call Q0 and Q1 control points, since they are dependent on P 0, P 1, and P 1 through parameter t in (2.3) and

(2.4).
2Figure 2.1(b) shows the same curve as in Figure 2.1(a), just with a recursive notation, discussed in Section 2.3.
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2.2. BÉZIER QUADRATIC 11
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Figure 2.1: A Bézier quadratic curve illustrated at t = 0.5 with (a) original notation and (b) the de Casteljau’s

algorithm notation. Reference: de casteljau.py.
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2.2. BÉZIER QUADRATIC 12

Example 1.

Figure 2.2 illustrates the same quadratic Bézier curve shown in Figure 2.1, generated at six

discrete points in the interval t ∈ [0, 1]. �

t = 0.0 t = 0.2 t = 0.4

t = 0.6 t = 0.8 t = 1.0

Figure 2.2: The Bézier quadratic curve discussed in Figure 2.1, illustrated in sequence with t starting at 0

and ending at 1. Reference: de casteljau.py.
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2.2. BÉZIER QUADRATIC 13

With these Figures 2.1–2.2 in mind, a few additional observations3 can be made:

• The control points sequence P 0, P 1, P 2 is a coarse and discrete approximation the

continuous quadratic Bézier curve Q(t).

• The end points, P 0 and P 2, are interpolated, but the interior point P 1 is not inter-

polated.4

• The tangent of the curve Q(t) at t = 0 is parallel to the line P 1 − P 0. The tangent

of the curve Q(t) at t = 1 is parallel to the line P 2 − P 0.

• The entire curve Q(t) is contained in the triangle formed with vertices P 0, P 1, P 2.

3These items are stated as true but not proven here. Consult the references cited herein for proofs.
4This will generalize to all interior points for higher-degree Bézier curves.
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2.3. DE CASTELJAU’S ALGORITHM 14

2.3 de Casteljau’s Algorithm

The foregoing development can be generalized, and is known as de Casteljau’s algorithm.

Let P d
i be control points where

• i denotes the control point index, i = 0, 1, . . . n, (total of n+ 1 control points), and

• d denote the degree of the curve, d = 0, 1, . . . p.

Thus P 0
i denote the base level control points. In the preceding section,

P 0 7→ P 0
0, d = 0, thus P 0

i is a point, importantly not parameterized by t (2.7)

P 1 7→ P 0
1, (2.8)

P 2 7→ P 0
2, (2.9)

Q0(t) 7→ P 1
0(t), d = 1, thus P 1

i (t) is a line parameterized by t, (2.10)

Q1(t) 7→ P 1
1(t), and (2.11)

Q(t) 7→ P 2
0(t), d = 2, thus P 2

i (t) is a quadratic parameterized by t. (2.12)

Then, de Casteljau’s algorithm states

P d
i (t) = (1− t) P d−1

i (t) + t P d−1
i+1 (t). (2.13)

SAND2022-7702 C 2022-06-08



2.3. DE CASTELJAU’S ALGORITHM 15

The Bézier quadratic written in (2.6) would then be rewritten as

P 2
0(t) = (1− t) P 1

0(t) + t P 1
1(t), (2.14)

= (1− t)
[
(1− t) P 0

0 + t P 0
1

]
+ t
[
(1− t) P 0

1 + t P 0
2

]
, (2.15)

= (1− t)2 P 0
0 + 2t(1− t) P 0

1 + t2 P 0
2. (2.16)

Figure 2.1 illustrates for the Bézier quadratic development, (a) the original notation and

(b) the de Casteljau’s algorithm notation.

Although de Casteljau’s algorithm is well-suited for computer implementation, it is

instructive to write the quadratic Bézier P 2
0(t) in matrix form for any sequence of three

control points5 P i, P i+1, and P i+2. With

P 0
0 7→ P i, (2.17)

P 0
1 7→ P i+1, (2.18)

P 0
2 7→ P i+2, and (2.19)

P 2
0(t) 7→ C2(t), to denote a curve Cp of degree p = 2, (2.20)

5This is somewhat of a return map, undoing the notation adopted to explain de Casteljau’s algorithm with i = 0.

SAND2022-7702 C 2022-06-08



2.3. DE CASTELJAU’S ALGORITHM 16

the quadratic Bézier C2(t) is written in matrix form as

C2(t) = [ P i P i+1 P i+2 ] · f(t2, t, 1), (2.21)
x(t)

y(t)

z(t)

 =

 xi xi+1 xi+2

yi yi+1 yi+2

zi zi+1 zi+2


︸ ︷︷ ︸

control points
curve dependent

 1 -2 1

2 0

sym. 0




t2

t

1

︸ ︷︷ ︸
curve independent

. (2.22)

SAND2022-7702 C 2022-06-08



2.4. BÉZIER CUBIC 17

2.4 Bézier Cubic

The cubic Bézier curve P 3
0(t), given four control points P 0

0, P
0
1, P

0
2, and P 0

3, is given by

P 3
0(t) = (1− t)3 P 0

0 + 3t(1− t)2 P 0
1 + 3t2(1− t) P 0

2 + t3 P 0
3. (2.23)

Like the quadratic, the cubic Bézier P 3
0(t) may be writtin in matrix form for any sequence

of four control points P i, P i+1, P i+2 and P i+3. With

P 0
0 7→ P i, (2.24)

P 0
1 7→ P i+1, (2.25)

P 0
2 7→ P i+2, (2.26)

P 0
3 7→ P i+3, and (2.27)

P 3
0(t) 7→ C3(t), to denote a curve Cp of degree p = 3, (2.28)

the cubic Bézier C3(t) is written in matrix form as

C3(t) = [ P i P i+1 P i+2 P i+3 ] · f(t2, t, 1), (2.29)
x(t)

y(t)

z(t)

 =

 xi xi+1 xi+2 xi+3

yi yi+1 yi+2 yi+3

zi zi+1 zi+2 zi+3


︸ ︷︷ ︸

control points
curve dependent


-1 3 -3 1

-6 3 0

0 0

sym. 0




t3

t2

t

1

︸ ︷︷ ︸
curve independent

. (2.30)
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2.5. BERNSTEIN POLYNOMIALS 18

2.5 Bernstein Polynomials

The general form of a degree p Bézier curve Cp(t) defined by p + 1 control points P i,

i = 0, 1, . . . , p, is given by

Cp(t)
∆
=

p∑
i=0

Bp
i (t)P i, (2.31)

where Bp
i (t) is a Bernstein polynomial, defined as

Bp
i (t) =

(
p

i

)
ti(1− t)p−i, and where

(
p

i

)
=

p!

i! (p− i)! (2.32)

is the binomial coefficient. The binomial coefficients are readily attained from Pascal’s

triangle, written up to p = 4 in Table 2.1.

Using (2.31), the linear (p = 1), quadratic (p = 2), cubic (p = 3), and quartic (p = 4)

Bézier curves can be written, respectively, in explicit form as

C1(t) = B1
0(t)P 0 +B1

1(t)P 1, (2.33)

C2(t) = B2
0(t)P 0 +B2

1(t)P 1 +B2
2(t)P 2, (2.34)

C3(t) = B3
0(t)P 0 +B3

1(t)P 1 +B3
2(t)P 2 +B3

3(t)P 3, (2.35)

C4(t) = B4
0(t)P 0 +B4

1(t)P 1 +B4
2(t)P 2 +B4

3(t)P 3 +B4
4(t)P 4. (2.36)
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2.5. BERNSTEIN POLYNOMIALS 19

Table 2.1: First five degrees of binomial coefficients from Pascal’s triangle.

degree binomial coefficient

p = 0 1

p = 1 1 1

p = 2 1 2 1

p = 3 1 3 3 1

p = 4 1 4 6 4 1
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2.5. BERNSTEIN POLYNOMIALS 20

Observations6 include (see Figure 2.3 for a visual illustration of these properties):

• The Bernstein polynomials always sum to one,

p∑
i=0

Bp
i (t) = 1.0. (2.37)

This concept is called partition of unity.

• The first basis is unity Bp
0(0) = 1 at the start of the interval t = 0, when all other

bases are zero. Similarly, the last basis is unity Bp
p(1) = 1 and the end of the interval

t = 1, when all other bases go to zero.

• The polynomials are non-negative,

Bp
i (t) ≥ 0 for all p

i with t ∈ [0, 1]. (2.38)

• Each polynomial Bp
i (t) has a single maximum in the parameter space t ∈ [0, 1] at

t = i/p.

• All polynomials are symmetric in t about t = 1/2.

6See references cited herein for proofs.
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2.5. BERNSTEIN POLYNOMIALS 21

Example 2.

The Bernstein polynomials for a linear (p = 1) Bézier curve are

B1
0(t) =

(
1

0

)
t0(1− t)1−0 = (1− t), (2.39)

B1
1(t) =

(
1

1

)
t1(1− t)1−1 = t, (2.40)

which match the coefficients in (2.1). These polynomials are shown in Figure 2.3(a). �
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2.5. BERNSTEIN POLYNOMIALS 22

Example 3.

The Bernstein polynomials for a quadratic (p = 2) Bézier curve are

B2
0(t) =

(
2

0

)
t0(1− t)2−0 = (1− t)2, (2.41)

B2
1(t) =

(
2

1

)
t1(1− t)2−1 = 2t(1− t), (2.42)

B2
2(t) =

(
2

2

)
t2(1− t)2−2 = t2, (2.43)

which match the coefficients in (2.16). These polynomials are shown in Figure 2.3(b). �
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2.5. BERNSTEIN POLYNOMIALS 23

Example 4.

The Bernstein polynomials for a cubic (p = 3) Bézier curve are

B3
0(t) =

(
3

0

)
t0(1− t)3−0 = (1− t)3, (2.44)

B3
1(t) =

(
3

1

)
t1(1− t)3−1 = 3t(1− t)2, (2.45)

B3
2(t) =

(
3

2

)
t2(1− t)3−2 = 3t2(1− t), (2.46)

B3
3(t) =

(
3

3

)
t3(1− t)3−3 = t3, (2.47)

which match the coefficients in (2.23). These polynomials are shown in Figure 2.3(c). �
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2.5. BERNSTEIN POLYNOMIALS 24

Example 5.

The Bernstein polynomials for a quartic (p = 4) Bézier curve are

B4
0(t) =

(
4

0

)
t0(1− t)4−0 = (1− t)4, (2.48)

B4
1(t) =

(
4

1

)
t1(1− t)4−1 = 4t(1− t)3, (2.49)

B4
2(t) =

(
4

2

)
t2(1− t)4−2 = 6t2(1− t)2, (2.50)

B4
3(t) =

(
4

3

)
t3(1− t)4−3 = 4t3(1− t), (2.51)

B4
4(t) =

(
4

4

)
t4(1− t)4−4 = t4. (2.52)

These polynomials are shown in Figure 2.3(d). Figure 2.4 shows the Bernstein polynomials for

p = 5, 6, 7, 8. �
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2.5. BERNSTEIN POLYNOMIALS 25

0.00 0.25 0.50 0.75 1.00

t

0.00

0.25

0.50

0.75

1.00

B
p i
(t

)

B3
0(t)

B3
1(t) B3

2(t)

B3
3(t)

(c) cubic (p = 3)

0.00

0.25

0.50

0.75

1.00

B
p i
(t

)

B1
0(t) B1

1(t)

(a) linear (p = 1)

0.00 0.25 0.50 0.75 1.00

t

B4
0(t)

B4
1(t) B4

2(t) B4
3(t)

B4
4(t)

(d) quartic (p = 4)

B2
0(t)

B2
1(t)

B2
2(t)

(b) quadratic (p = 2)

Figure 2.3: Bernstein polynomials for Bézier (a) linear, (b) quadratic, (c) cubic, and (d) quartic curves.

Reference: bernstein.py, bernstein polynomial.py.
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Figure 2.4: Bernstein polynomials for Bézier (a) p = 5, (b) p = 6, (c) p = 7, and (d) p = 8 curves. Reference:

bernstein extended.py.
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Example 6.

Using the Bernstein polynomials for cubic (p = 3) Bézier curve, illustrate the curves generated

by the following control points, labeled 0, 1, 2, 3, as shown in Figure 2.5. �
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Figure 2.5: Cubic (p = 3) Bézier curves constructed from Bernstein polynomials and control points labeled

0, 1, 2, 3. Dashed, dotted, and dashed-dotted lines show the incremental construction of the curve as each

control point is added. Reference: bernstein sum.py.
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Example 7.

The letters in “cubic” can be created from cubic (p = 3) Bernstein polynomials. The “u” shows

the canonical form of the cubic Bézier, with the first and last points as the anchors, and the

second and penultimate points as the tangents from their respective anchors. See Figure 2.6.
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Figure 2.6: Spelling of the first three letters in the word “cubic” as a mnemonic for the shapes created with

cubic Bézier curves. The “u” is the canonical shape. Capital “I” (created with co-linear control points) and

lowercase “c” are created as shown in Figure 2.5. Reference: bernstein sum ext.py.
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Example 8.

Modern vectorized fonts are created from Bézier curves. Figure 2.7 shows the letter “e”, Georgia

font family, made from eleven (11) Bézier cubic (p = 3) curves and twenty-seven (27) control

points. �
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Figure 2.7: Letter “e” composed of Bézier curves. See view bezier.py and Georgia-e-config.json on the

¥ GitHub SIBL repository.
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Chapter 3

Bézier Surfaces

The Bézier curve, C, was parameterized by t. For the Bézier surface, S, we have two

parameters, t and u,1 with t ∈ [0, 1] and u ∈ [0, 1]. The Bézier surface is an extension of

the Bézier curve, defined in (2.31).

Let P be the set of control points, P i,j(x, y, z) ∈ R3 ∀ i ∈ 0 . . . p, j ∈ 0 . . . q, be

arranged in a non-decreasing sequence in two dimensions, referred to as the control net

N .2 The control net N is the arrangement of control points by control point index into a

non-decreasing net in (t, u) space:

1Bézier volumes, V, will then have three parameters t, u, and v. See Chapter 4 for details.
2The term control grid is sometimes used interchangeably with the term control net. We prefer “net” to “grid” because

the latter has connotation of a planar arrangement. However, the actual three-dimensional arrangement, in general, is faceted

and not planar.
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u = 0 0 < u < 1 u = 1

t = 0 P 0,0 P 0,1 · · · P 0,q

0 < t < 1
P 1,0 P 1,1 · · · P 1,q

...
... . . . ...

t = 1 P p,0 P p,1 · · · P p,q

The general form of a Bézier surface Sp,q(t, u) of degree p and p + 1 control points for

the t parameter and of degree q and q + 1 control points for the u parameter is defined as

Sp,q(t, u)
∆
=

p∑
i=0

q∑
j=0

Bp
i (t) Bq

j (u) P i,j. (3.1)

The Bézier basis functions are defined as the outer product of two Bernstein polynomials,

Bp,q
i,j (t, u)

∆
= Bp

i (t)⊗Bq
j (u). (3.2)

While not necessary, it is often the case in practice that the number of control points for

the t and u parameters are taken to be the same, i.e., (p + 1) = (q + 1). In this case, the

foregoing definition reduces to

Bp
i,j(t, u)

∆
= Bp

i (t)⊗Bp
j (u). (3.3)

Three examples of basis functions are presented:

B1
i,j(t, u) bi-linear in Figure 3.1,

B2
i,j(t, u) bi-quadratic in Figure 3.5, and

B3
i,j(t, u) bi-cubic in Figure 3.14.
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Figure 3.1: Bézier bi-linear basis functions. See view bernstein surface.py on the ¥ GitHub SIBL repos-

itory.
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Figure 3.2: Continued from previous figure.
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Figure 3.3: Continued from previous figure.
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Figure 3.4: Continued from previous figure.
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Figure 3.5: Bézier bi-quadratic basis functions.
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Figure 3.6: Continued from previous figure.
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Figure 3.7: Continued from previous figure.
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Figure 3.8: Continued from previous figure.
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Figure 3.9: Continued from previous figure.
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Figure 3.10: Continued from previous figure.
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Figure 3.11: Continued from previous figure.
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Figure 3.12: Continued from previous figure.
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Figure 3.13: Continued from previous figure.
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Figure 3.14: Bézier bi-cubic basis functions.
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Figure 3.16: Continued from previous figure.
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Figure 3.17: Continued from previous figure.
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Figure 3.19: Continued from previous figure.
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Figure 3.20: Continued from previous figure.
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Figure 3.21: Continued from previous figure.
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Figure 3.22: Continued from previous figure.
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Figure 3.23: Continued from previous figure.
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Figure 3.24: Continued from previous figure.
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Figure 3.25: Continued from previous figure.
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Figure 3.26: Continued from previous figure.
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Figure 3.27: Continued from previous figure.
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Figure 3.28: Continued from previous figure.
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Example 9.

The Utah teapot is a cononical example of shape composition from Bézier surfaces. In Fig-

ure 3.30, we show the quarter-model (and half-symmetry) version of the Utah teapot created

from ten (10) Bézier bi-cubic (p = 3, q = 3) surfaces and one-hundred-twenty-seven (127)

control points. �
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Figure 3.30: The quarter-model (and half-symmetry) version of the Utah teapot composed of Bézier surfaces.

See view bezier.py and utah-teapot-config.json on the ¥ GitHub SIBL repository.
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Chapter 4

Bézier Volumes

Bézier volumes derive as a natural dimensional extension of Bézier surfaces. The control

point net/grid used for surfaces becomes a control point lattice for volumes. The general

form of a Bézier volume Vp,q,r(t, u, v)

of degree p and p+ 1 control points for the t parameter,

of degree q and q + 1 control points for the u parameter, and

of degree r and r + 1 control points for the v parameter,

is defined as

Vp,q,r(t, u, v)
∆
=

p∑
i=0

q∑
j=0

r∑
k=0

Bp
i (t) Bq

j (u) Br
k(v) P i,j,k. (4.1)
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The Bézier basis functions are defined as the outer product of three Bernstein polynomials,

Bp,q,r
i,j,k (t, u, v)

∆
= Bp

i (t)⊗Bq
j (u)⊗Br

k(v). (4.2)

While not necessary, it is often the case in practice that the number of control points for

the t, u, and v parameters are taken to be the same, i.e., (p + 1) = (q + 1) = (r + 1). In

this case, the foregoing definition reduces to

Bp
i,j,k(t, u, v)

∆
= Bp

i (t)⊗Bp
j (u)⊗Bp

k(v). (4.3)
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Example 10.

In Figure 4.1, we show a quarter-symmetry thick pipe constructed from one (1) Bézier tri-

quadratic (p = q = r = 2) volume and twenty-seven (27) control points (three control points

for each of the three dimensions).

�
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Figure 4.1: The quarter-symmetry thick pipe composed a Bézier volume. See view bezier.py and

triquad-qtr-cyl-config.json on the ¥ GitHub SIBL repository.
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Chapter 5

Introduction to B-Spline

Geometry

5.1 Parameter Space

In Bézier geometry, parameter space t for curves1 is a real number between zero and unity,

inclusive,

t ∈ R ⊂ [ 0.0, 1.0 ]. (5.1)

For B-spline geometry, the parameter space is taken as a real number between zero and

1This is extended by u for surfaces and again by v for volumes.
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some number, TI, typically larger than unity as seen in the forthcoming discussion. For

now, we say

t ∈ R ⊂ [ T0, TI ]. (5.2)

So, the parameter space for Bézier curves will be a special case of the parameter space for

B-spline curves when T0 = 0.0 and TI = 1.0.

5.2 Knots, Knot Spans, Knot Vectors

Next, we identify discrete, non-decreasing values along this interval [ T0, TI ], and define

these values as knots. Knots decompose the parameter space into sequential sub-intervals,

called knot spans.2 The set of (I + 1) knots compose a knot vector T, viz.

T = { T0,T1,T2, . . . ,TI } = {Ti}Ii=0 (5.3)

Because knots mark the termination points, beginning and end, of knot spans, they

impart a measure on the knot span, which is simply the difference between the values at

sequential knots, and may be as small as zero, since knot sequence values are non-decreasing.

For example, the value of the first knot span is equal to the value (T1−T0). A knot vector

with (I + 1) knots has (I) knot spans.
2For curves, a knot in parameter space will get mapped to a point in physical space. For surfaces, a knot will get mapped to

a curve. For volumes, a knot will get mapped to a surface. For now, consider only curves with knots.
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Remark 5.2.1. Recastability of the Parameter Space

Since the B-Spline domain [ 0.0, TI ] is a parameter space, it can be recast. Two examples

follow:

• Normalization: The entire interval can be divided by TI, making the new parameter

space be [ 0.0, 1.0 ], which is a recovery of the Bézier parameter space.

• Offset: The interval may be shifted up or down by some constant value. Thus, T0 is

not necessarily always zero.

Remark 5.2.2. Unit Knot Span Convention

It is a convention, but not a requirement, to denote knot values as non-negative integer val-

ues starting from zero, though they actually have non-negative real values. For example, the

knot vector T = { 0.0, 0.5, 1.0 } can be equally-well represented as T = { 0.0, 1.0, 2.0 }.
Both have three knots but only the latter has a unit knot span. The unit knot span

convention is used because it is often convenient to count knots, one by one.

Remark 5.2.3. Connection to Finite Element Analysis (FEA)

Knot spans will also be known as elements because we perform numerical quadrature over

a knot span in isogeometric analysis (IGA) [Cottrell et al., 2009]. In IGA, the parent (or

local or parameterized) element is the knot span. All of the knot spans described by a

single knot vector are defined as a patch. A patch spans the B-spline parameter space.

In contrast, isoparametric analysis used for FEA has two notions of element: the parent

(or local or parameterized) element and the physical (global) element.
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5.3 Uniform Knot Vectors

When all the knot spans of a given knot vector are equal, the knot vector is uniform.

Otherwise, the knot vector is non-uniform. We will begin the discussion with uniform

knot vectors because they are the easier of the two variants to develop.

Remark 5.3.4. Knot Vectors Notation

Knot vectors are composed of real numbers. Hereafter we will write them without decimal

values when possible. This shorthand notation should not be construed as integer values.

Knot vectors belong to the set of real numbers and (generally) not to the set of integers.

Example 11.

A uniform knot vector containing 10 knots might be written as

T = { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 }, with t ∈ R ⊂ [ 0, 9 ]. (5.4)

�

Example 12.

A non-uniform knot vector containing 10 knots might be written as

T = { 0, 0, 2, 3, 4, 5, 6, 7, 8, 9 }, with t ∈ R ⊂ [ 0, 9 ]. (5.5)

The first two knot spans have a value of zero and two, respectively. The remaining knot spans

have a value of one. Thus, the knot vector is non-uniform. Notice also the repeated knot value

SAND2022-7702 C 2022-06-08



5.4. BASIS FUNCTIONS 72

of zero at the beginning of the knot vector. This is allowed since knots are a non-decreasing

sequence. Repeated beginning and end knots will have a particular significance, as shown later

in Section 5.5. �

5.4 Basis Functions

Let the B-spline normalized basis function of degree p be written Np. Here, p denotes

degree; it is not an exponent. After developing the basis functions, we then use them to

construct B-spline curves in Chapter 6. The “B” in B-spline stands for basis.

The first normalized basis function is the unit piecewise constant, defined as

for p = 0 : N 0
i (t)

∆
=

{
1 if Ti ≤ t < Ti+1,

0 otherwise.
(5.6)

Notice for the non-zero range, defined over Ti ≤ t < Ti+1, the domain

• left-hand-side uses ≤, but the

• right-hand-side uses < (and not ≤).

Example 13.

B-spline constant. Figure 5.1 shows N 0
i (t) from (5.6), the unit piecewise constant basis

functions (degree p = 0), in parametric space, t ∈ [ T0, TI ], I = 6, for the uniform knot vector
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T = { T0,T1,T2,T3,T4,T5,T6 } = { 0, 1, 2, 3, 4, 5, 6 }. (5.7)

�

SAND2022-7702 C 2022-06-08



5.4. BASIS FUNCTIONS 74

0 1 2 3 4 5 6

t

0

1

N
0 0
(t

)

0 1 2 3 4 5 6

t

0

1

N
0 1
(t

)

0 1 2 3 4 5 6

t

0

1

N
0 2
(t

)

Figure 5.1: B-spline constant (p = 0) basis function. See plot bspline basis manual.py on GitHub.
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Figure 5.2: Continued from previous figure.

SAND2022-7702 C 2022-06-08



5.4. BASIS FUNCTIONS 76

For a basis function of degree p > 0, e.g., p = 1, 2, 3, . . ., the normalized basis functions

are defined by the Cox-de Boor recursion formula:

for p ≥ 1 : Np
i (t)

∆
=

t− Ti

Ti+p − Ti
Np−1

i (t) +
Ti+p+1 − t
Ti+p+1 − Ti+1

Np−1
i+1 (t). (5.8)

The recursive definition can lead to cases where 0/0 is encountered. In these cases, the

quotient is simplied defined as zero, viz.

if Eq. (5.8) =⇒ 0/0,

then Eq. (5.8)
set
= 0. (5.9)

Example 14.

B-spline linear. Using (5.8), the first (i = 0) normalized basis function of degree (p = 1) is

N 1
0 (t) =

t− T0

T0+1 − T0
N 1−1

0 (t) +
T0+1+1 − t
T0+1+1 − T0+1

N 1−1
0+1 (t), (5.10)

=
t− T0

T1 − T0
N 0

0 (t) +
T2 − t
T2 − T1

N 0
1 (t). (5.11)

Review of Figure 5.1 shows N 0
0 (t) and N 0

1 (t) act as “on” and “off” switches, since

N 0
0 (t) =

{
1 if T0 ≤ t < T1,

0 otherwise;
and, N 0

1 (t) =

{
1 if T1 ≤ t < T2,

0 otherwise.
(5.12)
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Thus,

N 1
0 (t) =


(t− T0) / (T1 − T0) if T0 ≤ t < T1,

(T2 − t) / (T2 − T1) if T1 ≤ t < T2,

0 otherwise.

(5.13)

Figure 5.3 shows the B-spline linear basis functions (degree p = 1) over the same knot vector

used for Figure 5.1. Note, for the given knot vector T = { 0, 1, 2, 3, 4, 5, 6 }, there is one

fewer complete linear basis function than there is complete constant basis function. Explained

below, this is due to local support, which increases with increasing degree and thus decreases

the number of complete basis functions that can exist in the extents of the knot vector. �

Remark 5.4.5. Notice the first (i = 0) normalized basis function, Np
i (t), of degree p

requires (p+ 1) knots. Specifically with p = 1 in (5.13), N 1
0 (t) requires knots { T0,T1,T2 }

to be defined. This will give rise to a relationship between the number of knots and both

the degree and number of control points in (6.2).

Since we have not yet introduced control points, this concept is a bit ambiguous for

now. However, at this early point, it is useful to seed the notion of the first basis function

(which will eventually be multiplied by the first control point) of degree p requires (p+ 1)

knots.

This example illustrates the pattern of local support. This pattern can be stated as

follows:
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A B-spline basis function of degree p

will have local support over (p + 1) knot spans.

Figure 5.3 also shows the pattern of periodicity in the basis functions for N 1
i (t). In

general, the unit piecewise linear (degree p = 1) basis function at knot Ti can be written

as

N 1
i (t) =


(t− Ti) / (Ti+1 − Ti) if Ti ≤ t < Ti+1,

(Ti+2 − t) / (Ti+2 − Ti+1) if Ti+1 ≤ t < Ti+2,

0 otherwise.

(5.14)

The periodicity pattern exists for all B-spline basis functions Np
i (t) of any degree p ≥ 0.
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Figure 5.3: B-spline linear (p = 1) basis function. See plot bspline basis manual.py on GitHub.
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Figure 5.4: Continued from previous figure.
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The local support property means that B-spline basis functions of increasing degree

require an increasing number of knots to be defined. Increasing the degree of the B-spline

basis tends to both increase the duration and decrease the amplitude of the non-zero values

of the function. A basis function of degree p also depends on the basis functions of decreasing

order, e.g., (p−1), (p−2), and so on. This dependence is defined through the Cox-de Boor

relationships.

Figure 5.5 illustrates the Cox-de Boor recursion algorithm, with local support over knot

spans.

Ti Ti+1 Ti+2 Ti+3 Ti+4
... ... ... ... ... ... ... ...

N 0
i N 0

i+1 N 0
i+2 N 0

i+3
... ... ... ... ... ...

N 1
i N 1

i+1 N 1
i+2

... ... ... ...

N 2
i N 2

i+1
... ...

N 3
i

Figure 5.5: Graphical illustration of Cox-de Boor recursion algorithm up to the degree of cubic (p = 3).
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Figure 5.6 illustrates the Cox-de Boor recursion algorithm, with local support over knot

spans, reimagined with a gridded shape.

Ti

degree # spans # knots −→

p = 0 1 2 N 0
i −→ Ti+1

−→ −→

p = 1 2 3 N 1
i −→ N 0

i+1 −→ Ti+2

−→ −→ −→

p = 2 3 4 N 2
i −→ N 1

i+1 −→ N 0
i+2 −→ Ti+3

−→ −→ −→ −→

p = 3 4 5 N 3
i −→ N 2

i+1 −→ N 1
i+2 −→ N 0

i+3 −→ Ti+4

Figure 5.6: Graphical illustration of Cox-de Boor recursion algorithm up to the degree of cubic (p = 3), with

gridded arrangement.
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Example 15.

B-spline quadratic. Using (5.8), the ith normalized basis function of degree (p = 2) is

N 2
i (t) =

t− Ti

Ti+2 − Ti
N 1

i (t) +
Ti+3 − t
Ti+3 − Ti+1

N 1
i+1(t), (5.15)

=
t− Ti

Ti+2 − Ti

{
t− Ti

Ti+1 − Ti
N 0

i (t) +
Ti+2 − t
Ti+2 − Ti+1

N 0
i+1(t)

}
+

Ti+3 − t
Ti+3 − Ti+1

{
t− Ti+1

Ti+2 − Ti+1
N 0

i+1(t) +
Ti+3 − t
Ti+3 − Ti+2

N 0
i+2(t).

}
(5.16)

N 2
i (t) =



t− Ti

Ti+2 − Ti
· t− Ti

Ti+1 − Ti
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . if Ti ≤ t < Ti+1,

t− Ti

Ti+2 − Ti
· Ti+2 − t

Ti+2 − Ti+1
+

Ti+3 − t
Ti+3 − Ti+1

· t− Ti+1

Ti+2 − Ti+1
if Ti+1 ≤ t < Ti+2,

Ti+3 − t
Ti+3 − Ti+1

· Ti+3 − t
Ti+3 − Ti+2

. . . . . . . . . . . . . . . . . . . . . . . . . . if Ti+2 ≤ t < Ti+3,

0 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . otherwise.

(5.17)

�
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Figure 5.7: B-spline quadratic (p = 2) basis function. See plot bspline basis manual.py on GitHub.
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Figure 5.8: Continued from previous figure.
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From 5.8: Np
i (t)

∆
=

t− Ti

Ti+p − Ti
Np−1

i (t) +
Ti+p+1 − t
Ti+p+1 − Ti+1

Np−1
i+1 (t).Ti

1
−→

N 0
i 0 −→ Ti+1

t
−

T
i

T
i+

1
−

T
i

1
−→

N 1
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−
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−
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Figure 5.9: Cox-de Boor illustration up to cubic (p = 3).SAND2022-7702 C 2022-06-08
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Example 16.

The first B-spline basis functions, Np
0 (t) for degrees p ∈ [0, 1, 2, 3, 4], are plotted over (p + 1)

knot spans where there is local support. The knot vector is composed of five knots T =

{Ti}4
i=0 = { 0, 1, 2, 3, 4, 5 }. Note that each basis function has (span = degree + 1), as

shown in Fig. 5.10. �
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p
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Figure 5.10: The first B-spline basis functions for degrees p = 0 to p = 4. See plot bspline N0 p0 to p4.py

on GitHub.
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5.5 Non-Uniform Knot Vectors

The repetition of a knot value in the knot vector causes a knot span to go to zero, which is

one way to cause knot vector to change from uniform to non-uninform.3

From this point forward, unless otherwise indicated, we focus on a special case of non-

uniform knot vectors called open knot vectors,4

T = { Ta, . . . ,Ta︸ ︷︷ ︸
p+1

, Tp+1, . . . , TI−p−1, Tb, . . . ,Tb︸ ︷︷ ︸
p+1

}, (5.18)

where the first knot value, Ta
set
= T0, and the last knot value, Tb

set
= TI, are repeated (p+ 1)

times.

3The other way to cause a uniform knot vector to become non-uniform without repeated knot values is to have two or more

knot spans with non-equal (and non-zero because repeated knot values are absent) knot interval distance.
4Open knot vectors are sometimes also called clamped knot vectors or non-periodic knot vectors.
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• In Section 5.5.1, we introduce non-uniform knot vectors by reviewing cases where the

first and last knots are repeated one or more times.

• In Section 5.5.2, we see how results in the preceding section can give rise to the Bézier

basis functions as a special case of the B-spline basis functions.

• In Section 5.5.3, we examine repeated knots that are repeated in general throughout

the knot vector (both at the knot vector endpoints as well as within the knot vector).

• In Section 5.5.4, we generalized the B-spline basis functions further, by allowing for

non-uniform (and non-zero) knot spans within the knot vector.
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5.5.1 Repeated Knot Values at Knot Vector Endpoints

Example 17.

The nine B-spline linear basis functions (p = 1) for the knot vector composed of 11 knots

T = {Ti}10
i=0 = { 0, 0, 1, 2, 3, 4, 5, 6, 7, 8, 8 } produce eight elements (eight non-zero

knot spans) as shown in Fig. 5.11. �
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Figure 5.11: Nine B-spline linear basis functions. See view bspline.py and linear expanded.json on

GitHub.

SAND2022-7702 C 2022-06-08

https://github.com/sandialabs/sibl


5.5. NON-UNIFORM KNOT VECTORS 91

Example 18.

The nine B-spline quadratic basis functions (p = 2) for the knot vector composed of 12 knots

T = {Ti}11
i=0 = { 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7 } produce seven elements (seven non-zero

knot spans) as shown in Fig. 5.12. �
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Figure 5.12: Nine B-spline quadratic basis functions. See view bspline.py and quadratic expanded.json

on GitHub.
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Example 19.

The bases for the periodic sections of the B-spline quadratic basis functions (p = 2) in the

previous example (from element 1 to element 5), can be obtained from reformulation of the

Bézier quadratic bases functions. Recall the Bézier quadratic curve, which used three basis

functions to interpolate three controls, took the form:

C2(t) = B2
0(t)P 0 +B2

1(t)P 1 +B2
2(t)P 2, (5.19)

= (1− t)2P 0 + 2(1− t)tP 1 + t2P 2. (5.20)

The periodic quadratic B-spline basis functions, shown in Fig. 5.12 and called the periodic

modified quadratic Bézier basis functions, split the quadratic Bézier beginning and

ending functions into two, and lets each half be weighted by center control point P 1 as follows:

Ĉ2(t) = N̂ 2
0 (t)P 0 + N̂ 2

1 (t)P 1 + N̂ 2
2 (t)P 2, (5.21)

=
1

2
(1− t)2P 0 +

(
1

2
(1− t)2 + 2(1− t)t+

1

2
t2
)
P 1 +

1

2
t2P 2. (5.22)

=
1

2
〈 P 0 P 1 P 2 〉︸ ︷︷ ︸

control points
curve dependent

 1 -2 1

-2 2 1

1 0 0




t2

t

1

︸ ︷︷ ︸
curve independent

. (5.23)

Note the matrix is non-symmetric. For the Bézier, the matrix was symmetric. �
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Figure 5.13: Periodic modified quadratic Bézier basis functions to recover periodic quadratic B-spline bases.

See plot periodic bspline basis p2.py on GitHub.
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Example 20.

The bases for the open (non-periodic) sections of the B-spline quadratic basis functions (p = 2)

in the previous examples (element 0, and by symmetry, element 6), can be obtained from

reformulation of the Bézier quadratic bases functions. Using the results from the previous

example, we simply give back the one-half portion from the middle basis function to the first

or the last basis function, to open the first or the last section of the spline. Recall the Bézier

quadratic curve, which used three basis functions to interpolate three controls, took the form:

C2(t) = B2
0(t)P 0 +B2

1(t)P 1 +B2
2(t)P 2, (5.24)

= (1− t)2P 0 + 2(1− t)tP 1 + t2P 2. (5.25)

The first open (non-periodic) quadratic B-spline basis function, shown in Fig. 5.12, splits the

quadratic Bézier ending function, B2
2(t) into two parts, and moves one of the half-parts to center

control point P 1 as follows:

C̆2(t) = N̆ 2
0 (t)P 0 + N̆ 2

1 (t)P 1 + N̆ 2
2 (t)P 2, (5.26)

= (1− t)2P 0 +

(
2(1− t)t+

1

2
t2
)
P 1 +

1

2
t2P 2. (5.27)

These will be referred to as the left-open, right-periodic modified quadratic Bézier

basis functions. Note that the first basis, N̆ 2
0 , will fully interpolate P 0 at t = 0, where the

other two bases go to zero. Control point P 1 will be most influenced by N̆ 2
1 just after the

mid-interval. Control point P 2 will equally influenced by N̆ 2
1 and N̆ 2

2 at t = 1. �
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Figure 5.14: Left-open, right-periodic modified quadratic Bézier basis functions to recover first open (non-

periodic) quadratic B-spline bases. See plot open bspline basis p2.py on GitHub.
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Example 21.

The nine B-spline cubic basis functions (p = 3) for the knot vector composed of 13 knots

T = {Ti}12
i=0 = { 0, 0, 0, 0, 1, 2, 3, 4, 5, 6, 6, 6, 6 } produce six elements (six non-zero

knot spans) as shown in Fig. 5.15. �
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Figure 5.15: Nine B-spline cubic basis functions. See view bspline.py and cubic expanded.json on

GitHub.
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Example 22.

The nine B-spline quartic basis functions (p = 4) for the knot vector composed of 14 knots

T = {Ti}13
i=0 = { 0, 0, 0, 0, 0, 1, 2, 3, 4, 5, 5, 5, 5, 5 } produce five elements (five

non-zero knot spans) as shown in Fig. 5.16. �
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Figure 5.16: Nine B-spline quartic basis functions. See view bspline.py and quartic expanded.json on

GitHub.
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5.5.2 Recovery of Bézier Basis Functions

Bézier basis functions of degree p derive from B-spline basis functions that have knot vectors

of the form

T = { 0, . . . , 0︸ ︷︷ ︸
p+1

, 1, . . . , 1︸ ︷︷ ︸
p+1

}. (5.28)

Table 5.1 shows concrete examples of knot vectors for the linear, quadratic, cubic, and

quartic cases. Figures 5.17 through 5.20 illustrate these cases graphically.

Table 5.1: Knot vectors for B-spline bases to recover Bézier bases.

degree knot vector T

p = 1 { 0, 0, 1, 1 }
p = 2 { 0, 0, 0, 1, 1, 1 }
p = 3 { 0, 0, 0, 0, 1, 1, 1, 1 }
p = 4 { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 }
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Example 23.

Recovery of Bézier linear basis as a special case (Fig. 5.17).

The two Bézier linear (p = 1) basis functions {B1
i }1

i=0 are obtained as a special case of the

B-spline linear basis functions {N 1
i }1

i=0 when the knot vector T = {Ti}3
i=0 = { 0, 0, 1, 1 }.

�
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Figure 5.17: Recovery of Bézier linear basis functions from B-spline linear basis functions. See

view bspline.py and recover bezier linear.json on GitHub.
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Example 24.

Recovery of Bézier quadratic basis as a special case (Fig. 5.18).

The three Bézier quadratic (p = 2) basis functions {B2
i }2

i=0 are obtained as a special case

of the B-spline quadratic basis functions {N 2
i }2

i=0 when the knot vector T = {Ti}5
i=0 =

{ 0, 0, 0, 1, 1, 1 }. �
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Figure 5.18: Recovery of Bézier quadratic basis functions from B-spline quadratic basis functions. See

view bspline.py and recover bezier quadratic.json on GitHub.
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Example 25.

Recovery of Bézier cubic basis as a special case (Fig. 5.19).

The four Bézier cubic (p = 3) basis functions {B3
i }3

i=0 are obtained as a special case of the B-

spline cubic basis functions {N 3
i }3

i=0 when the knot vector T = {Ti}7
i=0 = { 0, 0, 0, 0, 1, 1, 1, 1 }.
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Figure 5.19: Recovery of Bézier cubic basis functions from B-spline cubic basis functions. See

view bspline.py and recover bezier cubic.json on GitHub.
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Example 26.

Recovery of Bézier quartic basis as a special case (Fig. 5.20).

The five Bézier quartic (p = 4) basis functions {B4
i }4

i=0 are obtained as a special case of the B-

spline quartic basis functions {N 4
i }4

i=0 when the knot vector T = {Ti}9
i=0 = { 0, 0, 0, 0, 0, 1, 1, 1, 1, 1 }.
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Figure 5.20: Recovery of Bézier quartic basis functions from B-spline quartic basis functions. See

view bspline.py and recover bezier quartic.json on GitHub.
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Remark 5.5.6. Local Support

One important distinction: normalized basis functions of B-splines have local support;

whereas, Bernstein polynomial basis of Béziers do not have local support.

For the B-spline basis, a single basis function is zero except for the spans over which

it is defined as non-zero. Moving a knot, accomplished by changing its value, will modify

only the bases that use that particular knot in a non-zero sense; all other bases remain

unchanged. This is easy to conceptualize through study of Figure 5.1, were a single knot

value increased or decreased.

In contrast, for the Bernstein polynomials, contributions from each basis function span

the entire parameter domain. Bernstein polynomials provide global support, not local

support.

Local support will be shown to be advantageous because a local modification to the

curves, surfaces, and volumes created by B-splines will not alter the entire geometry; it

only causes changes locally.
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5.5.3 Repeated Knot Values In General

Example 27.

The eight B-spline quadratic basis functions (p = 2) for the knot vector composed of 11 knots

T = {Ti}10
i=0 = { 0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5 } produce five elements (five non-zero knot

spans) as shown in Fig. 5.21. These basese are used to contruct the B-spline curve in Fig. 6.3.
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Figure 5.21: Reproduction of [Cottrell et al., 2009] Figure 2.5 (and [Piegl and Tiller, 1997] Figure 2.6). See

view bspline.py and Cottrell Fig2p5.json on GitHub.
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Example 28.

Reproduction of [Cottrell et al., 2009] Figure 2.6:

The 15 B-spline quartic basis functions (p = 4) for the knot vector composed of 20 knots

T = {Ti}19
i=0 = { 0, 0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 5 } produce five

elements (five non-zero knot spans) as shown in Fig. 5.22. �
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Figure 5.22: Reproduction of [Cottrell et al., 2009] Figure 2.6. See view bspline.py and

Cottrell Fig2p6.json on GitHub.
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5.5.4 Repeated Knot Values and Non-Zero, Non-Uniform Knot

Spans

Example 29.

Reproduction of [Piegl and Tiller, 1997] Figure 2.12:

The seven B-spline cubic basis functions (p = 3) for the knot vector composed of 11 knots

T = {Ti}10
i=0 = { 0, 0, 0, 0, 1, 5, 6, 8, 8, 8, 8 } produce four elements (four non-zero knot

spans) as shown in Fig. 5.23. �
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Figure 5.23: Reproduction of [Piegl and Tiller, 1997] Figure 2.12. See view bspline.py and

Piegl Fig2p12.json on GitHub.
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Chapter 6

B-Spline Curves

6.1 General Form

The general form of a degree p (p ≥ 0) B-spline curve Cp(t) defined by (n + 1) control

points {P i}ni=0 is given by

Cp(t)
∆
=

n∑
i=0

Np
i (t) P i, for t ∈ R ⊂ [ T0, TI ], (6.1)

where Np
i (t) is a B-spline basis function of degree p, defined in (5.6) and (5.8), and t is

a real number parameter bounded by the endpoints of the knot vector (see (5.2) and (5.3)).
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6.2 Knot Dependence on Degree and Control Points

An open B-spline basis function of degree p

with (n+ 1) control points will require

(I) knot spans and thus (I + 1) knots, where

I = p+ n+ 1.

Equivalently,

( I + 1 )︸ ︷︷ ︸
# knots

= ( p + 1 )︸ ︷︷ ︸
degree + 1

+ ( n + 1 )︸ ︷︷ ︸
# control points

(6.2)

Thus,

(# knots) = (degree + 1) + (# control points)

(# knots) = (order) + (# control points)
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Table 6.1: Requirements for number of knot spans, given a B-spline of degree p, up to cubic (p = 3), and

number of control points (n+ 1).

control knot knot parameter

degree points (n+ 1) spans m vector span

p = 0 P 0 1 1 { T0,T1 } t ∈ [T0,T1)

p = 1 P 0,P 1 2 3 { T0,T1,T2,T3 } t ∈ [T0,T3)

p = 2 P 0,P 1,P 2 3 5 { T0,T1,T2,T3,T4,T5 } t ∈ [T0,T5)

p = 3 P 0,P 1,P 2,P 3 4 7 { T0,T1,T2,T3,T4,T5,T6,T7 } t ∈ [T0,T7)

6.3 Verifications

Following are several examples that have been used as verification of the implementation

on ¥ GitHub. Knots are evaluated and shown along the B-spline curve. In the case of

repeated knots, only the first knot index is indicated.
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Example 30.

A cubic (p = 3) Bézier curve (Fig. 6.1) is a special case of a cubic B-spline curve (see basis

functions and knot vector 5.19) with knot vector composed of eight knots T = {Ti}7
i=0 =

{ 0, 0, 0, 0, 1, 1, 1, 1 } (cyan circles), a single element (one non-zero knot span), and four

control points {P i}3
i=0 = { (0, 0), (0.6, 1.6), (2.1, 1.9), (3, 0) } (red circles). �
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Figure 6.1: Reproduction of [Piegl and Tiller, 1997] Figure 3.1. See view bspline.py and

Piegl Fig3p1.json on GitHub.
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Example 31.

A cubic (p = 3) B-spline curve (Fig. 6.2) with knot vector composed of 11 knots T = {Ti}10
i=0 =

{ 0, 0, 0, 0, 0.25, 0.50, 0.75, 1, 1, 1, 1 } (cyan circles), four elements (four non-zero knot

spans), and seven control points {P i}6
i=0 = { (−14, 0), (0, 0), (0, 13), (15, 13), (20,−1.5),

(9,−10), (0,−5) } (red circles). �
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Figure 6.2: Reproduction of [Piegl and Tiller, 1997] Figure 3.2. See view bspline.py and

Piegl Fig3p2.json on GitHub.
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Example 32.

A quadratic (p = 2) B-spline curve (Fig. 6.3) with knot vector composed of 11 knots

T = {Ti}10
i=0 = { 0, 0, 0, 1, 2, 3, 4, 4, 5, 5, 5 } (cyan circles), five elements (five non-zero

knot spans), and eight control points {P i}7
i=0 = { (0, 1), (1, 0), (2, 0), (2, 2), (4, 2), (5, 4),

(2, 5), (1, 3) } (red circles). �
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Figure 6.3: Reproduction of [Cottrell et al., 2009] Figure 2.20. See view bspline.py and

Cottrell Fig2p20.json on GitHub.
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Example 33.

A quartic (p = 4) B-spline curve (Fig. 6.4) with knot vector composed of 14 knots

T = {Ti}13
i=0 = { 0, 0, 0, 0, 0, 0.2, 0.4, 0.6, 0.8, 1, 1, 1, 1, 1 } (cyan circles), five

elements (five non-zero knot spans), and nine control points {P i}8
i=0 = { (5, 10), (15, 25),

(30, 30), (45, 5), (55, 5), (70, 40), (60, 60), (35, 60), (20, 40) } (red circles). �
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Figure 6.4: Reproduction of [Bingol and Krishnamurthy, 2019] example. See view bspline.py and

Bingol 2D curve.json on GitHub.
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6.4 Additional Examples

Example 34.

A quadratic (p = 2) B-spline curve (Fig. 6.5) with knot vector composed of 12 knots

T = {Ti}11
i=0 = { 0, 0, 0, 1, 2, 3, 4, 5, 6, 7, 7, 7 } (cyan circles), seven elements (seven

non-zero knot spans), and nine control points {P i}8
i=0 = { (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0),

(−1,−1), (0,−1), (1,−1), (1, 0) } (red circles). Note the asymmetry about the x = 0 axis,

caused by the open knot vector’s repeated knots, beginning and end. �
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Figure 6.5: See view bspline.py and circle curve 9 points.json on GitHub.
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Example 35.

A periodic modified quadratic (p = 2) Bézier curve (Fig. 6.6) with eight elements, labeled 0

to 7 , and eight control points {P i}7
i=0 = { (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1),

(0,−1), (1,−1) }. �
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Figure 6.6: See plot modified bezier.py and circle-points.csv on GitHub.
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Example 36.

A periodic modified linear (p = 1) Bézier curve (Fig. 6.7) with eight elements, labeled 0 to 7 ,

and eight control points {P i}7
i=0 = { (1, 0), (1, 1), (0, 1), (−1, 1), (−1, 0), (−1,−1), (0,−1),

(1,−1) }. �
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Figure 6.7: See plot modified bezier.py and circle-points.csv on GitHub.
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Chapter 7

Curves from Sample Points

In this chapter, we demonstrate how to create B-Spline curve with a priori unknown control

points from a set of known data points, sampled from an arbitrary curve.

• In prior chapters, we used a set of (n+1) known control points {P i}ni=0 = { xi, yi, zi }ni=0

to generate a curve C(t) composed of points in space { x(t), (y)t, z(t) }, parameter-

ized by pseudo-time t ∈ [ T0, TI ].

• Now we do the inverse problem: We use a set of (s+1) known data points { Πk }sk=0 =

{ αk, βk, γk }sk=0 sampled at (unknown) time τk ∈ [ τ0, τs ] that lie on or near a curve

C(τ) generated from (n + 1) unknown control points {P̃ }ni=0 = { x̃i, ỹi, z̃i }ni=0. The

generated curve will fit to the given sampled points, up to some error tolerance.
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7.1 Development of a Curve Fit Methodology

[Piegl and Tiller, 1997]1 described two methodologies, interpolation and approxima-

tion, to solve the inverse problem.

• Interpolation satisfies the sample data precisely, and leads to equation solving of a

square matrix of dimension (n+ 1)× (n+ 1).

• Approximation does not necessarily satisfy the sample data precisely, and leads to

least-squares equation solving from an over-constrained matrix of dimension (s+1)×
(n+ 1), where s > n, described by [Piegl and Tiller, 1997] and [Eberly, 2020].

In the present work, we develop a curve fit methodology based on approximation, and

present interpolation as a special case (i.e., when s = n). We denote (s + 1) to be the

number of sample points. We denote (n+ 1) to be the number of control points.

1At 361.
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7.1.1 Sample Points and Control Points Relationship

Let the set of (s+ 1) sample points { Πk }sk=0 have coordinates { αk, βk, γk }sk=0 measured

at psuedo-time τk ∈ [ τ0, τs ]. Imagine each sample point satisfies the B-spline curve

equation (9.7) of degree p with (n+ 1) control points such that

{ α(τ), β(τ), γ(τ) } = Cp(τ) =
n∑

i=0

Np
i (τ) P̃ i. for τ ∈ R ⊂ [ τ0, τs ]. (7.1)

At discrete sample times, the foregoing equation can be expanded as2
α0 β0 γ0

α1 β1 γ1

α2 β2 γ2
...

...
...

αs βs γs


︸ ︷︷ ︸

(s+1) × nsd

=


N0(τ0) N1(τ0) · · · Nn(τ0)

N0(τ1) N1(τ1) · · · Nn(τ1)

N0(τ2) N1(τ2) · · · Nn(τ2)
...

... . . . ...

N0(τs) N1(τs) · · · Nn(τs)


︸ ︷︷ ︸

(s+1) × (n×1)


x̃0 ỹ0 z̃0

x̃1 ỹ1 z̃1
...

...
...

x̃n ỹn z̃n

 .
︸ ︷︷ ︸

(n+1) × nsd

(7.2)

The number of knots, (I + 1), remains a function of the basis function degree and the

number of control points through Eq. (6.2). Open knot vectors are used, so the knot vector

maintains the form in Eq. (5.18). For convenience, we set τ0 = 0 and τs = 1. Thus

T0 = τ0 = 0 and TI = τs = 1.

2For brevity, the degree p of the basis functions is omitted. Thus, Np
i (t) is simply Ni(t), where p is a given input.
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The number of space dimensions, indicated as nsd, is typically two or three for 2D or

3D, respectively. We refer to the (s+ 1)× (n+ 1) matrix as the sample basis matrix N,

since it represents evaluation of the B-spline normalized basis functions at sample times τk.

Taking each space dimension in isolation, the foregoing equation for x-axis data can be

written as,



α0

α1

α2
...

αs

︸ ︷︷ ︸
dim(α)=(s+1) × 1

=


N0(τ0) N1(τ0) · · · Nn(τ0)

N0(τ1) N1(τ1) · · · Nn(τ1)

N0(τ2) N1(τ2) · · · Nn(τ2)
...

... . . . ...

N0(τs) N1(τs) · · · Nn(τs)


︸ ︷︷ ︸

dim(N)=(s+1) × (n×1)


x̃0

x̃1
...

x̃n

 ,

︸ ︷︷ ︸
dim(x̃)=(n+1) × 1

(7.3)

or simply,

α = N x̃. (7.4)

Respectively, for y-axis and z-axis data, these equations are

β = N ỹ, and γ = N z̃. (7.5)

The N matrix depends on the pseudo-time parameter data τ = { τk }sk=0.
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How do we construct the interior sample times? Several strategies exist. The most

simple strategy is to assume equally spaced time parameter intervals for each of the

(s+ 1) sample points, thus

τ = { 0,
1

s
,

2

s
,

3

s
, . . . ,

s

s
} =

1

s
{ 0, 1, 2, 3, . . . , s }. (7.6)

This strategy is not recommended for the interpolation case, as explained below.

7.1.2 The Interpolation Special Case (s = n)

For the case where the number of sample points equals the number of control points, i.e.,

(s + 1) = (n + 1), [Piegl and Tiller, 1997]3 do not recommend the equally spaced time

parameter method (7.6) because it “can produce erratic shapes (such as loops) when the

[sample point] data is unevenly spaced.” They recommend two alternative methods. The

first alternative, the chord length method, creates the following sample times from

successive sample point distances:

τ0 = 0,

τk = τk−1 +
|Πk −Πk−1 |

C
, for k = 1, . . . , (n− 1),

τn = 1,

 (7.7)

3At 364.
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where the total chord length C as is defined as

C
∆
=

n∑
k=1

|Πk −Πk−1 |. (7.8)

The physical interpretation of this method is constant velocity: That is, the pseudo-time

interval scales directly with the distance between sample points. This can be seen readily

by rearranging (7.7),

C =
|Πk −Πk−1 |
τk − τk−1

=⇒ change in position

change in time
= velocity. (7.9)

The value of C is the total chord length, which is constant for a given set of sample points.

The second alternative method, the centripetal method, modifies (7.7) and (7.8) with

a square root,

τ0 = 0,

τk = τk−1 +

√
|Πk −Πk−1 |

D
, for k = 1, . . . , (n− 1),

τn = 1,

 (7.10)

where

D
∆
=

n∑
k=1

√
|Πk −Πk−1 |. (7.11)
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The square root amplifies distances per unit characteristic length when the sample

interval distance gets small (approaches zero), making it suited for sample data with “very

sharp turns.”[Piegl and Tiller, 1997]4

Next we turn our attention to the knot vectors. The most elementary method is to use

equally spaced knots,

T0 = · · · = Tp = 0,

Tp+j =
j

n+ 1− p, for j = 1, . . . , (n− p),

TI−p = · · · = TI = 1.


(7.12)

The following example illustrates how the equally spaced space knots strategy in (7.12)

leads to recovery of the knot vectors used in Figures. 5.11 through 5.16.

Example 37.

Equally spaced knots. Revisiting the examples shown in as shown in Figures. 5.11 through 5.16,

we demonstrate how the foregoing equations would produce equally spaced knot vectors. Here

number of sample points (s+ 1) is set equal to the number of control points (n+ 1), which is

nine for all cases (thus s = n = 8). Equation (6.2) is used to determine the number of knots.

4At 365.
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Fig. degree # knots knots

# p (I + 1) T0, . . . ,TI

5.11 1 11 T0 = T1 = 0, T9 = T10 = 1,

T1+j = j/8 for j = 1, . . . , 7

5.12 2 12 T0 = T1 = T2 = 0, T9 = T10 = T11 = 1,

T2+j = j/7 for j = 1, . . . , 6

5.15 3 13 T0 = T1 = T2 = T3 = 0, T9 = T10 = T11 = T12 = 1,

T3+j = j/6 for j = 1, . . . , 5

5.16 4 14 T0 = T1 = T2 = T3 = T4 = 0, T9 = T10 = T11 = T12 = T13 = 1,

T4+j = j/5 for j = 1, . . . , 4

�
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[Piegl and Tiller, 1997]5 recommend against use of equally spaced knots, which can lead

to a singular N matrix (7.3) when used with either the chord length method (7.7) or the

centripetal method (7.10). Instead, they recommend use of a so-called averaging method,

T0 = · · · = Tp = 0,

Tp+j =
1

p

p−1+j∑
i=j

τi, for j = 1, . . . , (n− p),

TI−p = · · · = TI = 1.


(7.13)

5At 365.
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Example 38.

Averaging knots. Revisiting the examples shown in as shown in Figures. 5.11 through 5.16,

we demonstrate evaluation of the knot vectors based on the averaging knots scheme in (7.13).

Again, the number of sample points (s+1) is set equal to the number of control points (n+1),

which is nine for all cases (thus s = n = 8). The sample time vector is τ = {τk}sk=0 = {τk}8
k=0.

Fig. degree # knots knots

# p (I + 1) T0, . . . ,TI

5.11 1 11 T0 = T1 = 0, T9 = T10 = 1,

T2 = τ1, T3 = τ2, T4 = τ3, . . . , T8 = τ7

5.12 2 12 T0 = T1 = T2 = 0, T9 = T10 = T11 = 1,

T3 = 1
2 (τ1 + τ2) , T4 = 1

2 (τ2 + τ3) , . . . , T8 = 1
2 (τ6 + τ7)

5.15 3 13 T0 = T1 = T2 = T3 = 0, T9 = T10 = T11 = T12 = 1,

T4 = 1
3 (τ1 + τ2 + τ3) ,

T5 = 1
3 (τ2 + τ3 + τ4) , . . . ,

T8 = 1
3 (τ5 + τ6 + τ7)

5.16 4 14 T0 = T1 = T2 = T3 = T4 = 0, T9 = T10 = T11 = T12 = T13 = 1,

T5 = 1
4 (τ1 + τ2 + τ3 + τ4) ,

T6 = 1
4 (τ2 + τ3 + τ4 + τ5) , . . . ,

T8 = 1
4 (τ4 + τ5 + τ6 + τ7)

�
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Example 39.

Interpolation of five 2D points, {P̃ i}4
i=0 = { (0, 0), (3, 4), (−1, 4), (−4, 0), (−4,−3) } (orange

‘+‘ with diamond outline) using a cubic (p = 3) B-spline curve. �

−4 −2 0 2 4 6

x

−2

0

2

4

6

y

Figure 7.1: Reproduction of [Piegl and Tiller, 1997] Example 9.1. Source code on GitHub.
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7.1.3 The Approximation General Case (s > n)

See [Piegl and Tiller, 1997], “Least Squares Curve Approximation” pages 410–412 for de-

tails.
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Chapter 8

NURBS

Prior to defining the B-spline basis functions, we examined uniform knot vectors in Sec-

tion 5.3 and then compared these to non-uniform knot vectors in Section 5.5. In this chap-

ter, we start with the open knot vector (non-periodic, non-uniform), previously described

in (5.18),

T = { Ta, . . . ,Ta︸ ︷︷ ︸
p+1

, Tp+1, . . . , Tm−p−1, Tb, . . . ,Tb︸ ︷︷ ︸
p+1

}, (8.1)

as our knot vector of choice. With this non-uniform knot vector, we create the original

B-spline basis function Np
i (t) in combination with positive weighting constants to give a

new rational basis function Rp
i (t).

Conceptually, we will weight a single B-spline basis function by a positive number and

129
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then normalize this weighted B-spline quantity by the inner product of all original basis

functions with all their respective weights. This creates a rational basis function. Mathe-

matically, we define the ith rational basis function as

Rp
i (t)

∆
=

Np
i (t) wi∑n

k=0N
p
k (t) wk

, for wi ∈ R+, wk ∈ R+ (8.2)

where Np
i (t) and Np

k (t) denote a B-spline normalized basis function defined in (5.6) through

(5.8), and all weights wi and {wk}nk=0 are positive, real numbers.

The combination of the non-uniform knot vector and the rational basis functions gives

rise to the NURB acronym, non-uniform, rational B-spline. We define the NURB curve as

Cp(t)
∆
=

n∑
i=0

Rp
i (t) P i, for t ∈ R ⊂ [ T0, TI ], (8.3)

where {P i}ni=0 are the (n + 1) control points. Compare the form of (8.3) to the form of

(9.7).
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Chapter 9

B-Spline Surfaces and Volumes

The B-Spline formulation for curves can be generalized to surfaces and volumes. Let the

following knot vectors be defined as

T = { Ta, . . . ,Ta︸ ︷︷ ︸
p+1

, Tp+1, . . . , TI−p−1, Tb, . . . ,Tb︸ ︷︷ ︸
p+1

}, (9.1)

U = { Ua, . . . ,Ua︸ ︷︷ ︸
q+1

, Uq+1, . . . , UJ−q−1, Ub, . . . ,Ub︸ ︷︷ ︸
q+1

}, (9.2)

V = { Va, . . . ,Va︸ ︷︷ ︸
r+1

, Vr+1, . . . , VK−r−1, Vb, . . . ,Vb︸ ︷︷ ︸
r+1

}. (9.3)
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9.1 Knot Dependence on Degree and Control Points

A B-spline basis function of degree p, q, and r with (n + 1), (m + 1), and (l + 1) control

points will require I, J, and K knot spans and thus (I+1), (J+1), and (K+1) knots, where

I = p+ n+ 1, (9.4)

J = q +m+ 1, (9.5)

K = r + l + 1. (9.6)

The number of knots has dependence on degree and control points as stated in Table 9.1.

Table 9.1: Knot number dependence on degree and control points.

(# knots) = (degree + 1) + (# control points)

(# knots) = (order) + (# control points)

(I + 1) = (p+ 1) + (n+ 1)

(J + 1) = (q + 1) + (m+ 1)

(K + 1) = (r + 1) + (l + 1)
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9.2 Generalized B-Splines Geometries

Then with the control points (generally in 3D) P i(x, y, z), P i,j(x, y, z), and P i,j,k(x, y, z),

arranged into a collection (array in 1D, net/grid in 2D, lattice in 3D) to describe a B-Spline

object in 1D, 2D, and 3D, respectively, the B-Spline curve, surface, and volume are defined

as

Cp(t)
∆
=

n∑
i=0

Np
i (t) P i, (9.7)

Sp,q(t, u)
∆
=

n∑
i=0

m∑
j=0

Np
i (t) N q

j (u) P i,j, (9.8)

Vp,q,r(t, u, v)
∆
=

n∑
i=0

m∑
j=0

l∑
k=0

Np
i (t) N q

j (u) N r
k(v) P i,j,k, (9.9)

for

t ∈ R ⊂ [ Ta, Tb ], (9.10)

u ∈ R ⊂ [ Ua, Ub ], (9.11)

v ∈ R ⊂ [ Va, Vb ]. (9.12)

SAND2022-7702 C 2022-06-08



9.2. GENERALIZED B-SPLINES GEOMETRIES 134

Example 40.

B-Spline surface construction. Twelve 3D control points, [{ P i,j }2
j=0 ]3i=0, organized into

a control net shown in Table 9.2, with (n + 1) = 4 control points for the t parameter and

(m+ 1) = 3 control points for the u parameter. A cubic (p = 3) B-spline curve is used for the

t parameter space. A quadratic (q = 2) B-spline curve is used for the u parameter space. Thus,

the number of knots is

(I + 1) = (p+ 1) + (n+ 1) = (3 + 1) + (4) = 8, (9.13)

(J + 1) = (q + 1) + (m+ 1) = (2 + 1) + (3) = 6, (9.14)

and the knot vectors are

T = { 0, 0, 0, 0︸ ︷︷ ︸
p+1=4

, 1, 1, 1, 1︸ ︷︷ ︸
p+1=4

}. (9.15)

U = { 0, 0, 0︸ ︷︷ ︸
q+1=3

, 1, 1, 1︸ ︷︷ ︸
q+1=3

}. (9.16)

Note that the structure of these B-spline knot vectors recovers a Bézier surface patch (see

Eq. 5.28). �
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Table 9.2: Control points P i,j(x, y, z), arranged into a control net.

j = 0 j = 1 j = 2

i = 0 (0, 0, 0) (0, 4, 0) (0, 8, -3)

i = 1 (2, 0, 6) (2, 4, 0) (2, 8, 0)

i = 2 (4, 0, 0) (4, 4, 0) (4, 8, 3)

i = 3 (6, 0, 0) (6, 4, -3) (6, 8, 0)
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Figure 9.1: Twelve control points, located at their (x, y, z) coordinates listed in Table 9.2. Reproduction of

[Bingol and Krishnamurthy, 2019] 3D surface. Source code on GitHub.
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Figure 9.2: Continued from previous figure. Single B-spline surface control net, connecting the twelve control

points.
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Figure 9.3: Continued from previous figure. Single B-spline surface patch, with a single bisection evaluation

(21 = 2 evaluation intervals) of the knot vectors T and U.
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Figure 9.4: Continued from previous figure. Single B-spline surface patch, with four bisection evaluations

(24 = 16 evaluation intervals) of the knot vectors T and U.
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9.3 Shape Primitives
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Figure 9.5: Recovery of the first Bézier bi-linear shape function. Red circles are control points. Blue dots are

surface evaluation points. Source code bspline surface Bezier recovery.py on GitHub.
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Figure 9.6: A tri-linear cube composed of six bi-linear surfaces. Red circles are control points. Blue dots are

surface evaluation points. Source code bspline surface cube linear.py on GitHub.
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Figure 9.7: A tri-quadratic cube composed of six bi-quadratic surfaces. Red circles are control points. Blue

dots are surface evaluation points. Source code bspline surface cube quadratic.py on GitHub.
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Figure 9.8: Transformation of a bi-quadratic surface (x = 0) into a bi-quadratic quarter-cylinder end cap

(x = 3) using (0, y, 0) control point coalescence to (0, 0, 0) and perimeter control point rebalancing. Source

code bspline surface quad2tri quadratic.py on GitHub.
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Figure 9.9: Continued from the previous figure. Planar view sequence of transformation from quadrilateral

perimeter to triangular perimeter. Source code bspline surface biquad2tri animation.py on GitHub.
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Figure 9.10: A tri-quadratic cylinder composed of three bi-quadratic surfaces. Red circles are control points.

Blue dots are surface evaluation points. Source code bspline surface qtrcyl quadratic.py on GitHub.
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Figure 9.11: Alternative view of previous figure, a tri-quadratic cylinder.
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Figure 9.12: A tri-quadratic cylinder morphed toward a sphere through pole coalescence. Source code

bspline surface qtrcyl2sphere quadratic.py on GitHub.
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Figure 9.13: Alternative view of previous figure, a tri-quadratic cylinder morphing toward a sphere.
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Figure 9.14: Isometric view sequence of transformation from half-cylinder to half-sphere. Source code

bspline surface cyl2sphere animation.py on GitHub.
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